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Annemarie	and	Erwin	Schrödinger.	(Newton's	dot	notation	for	the	time	derivative	is	used.)	The	Schrödinger	equation	is	a	linear	partial	differential	equation	that	governs	the	wave	function	of	a	quantum-mechanical	system.[1]: 1–2 	It	is	a	key	result	in	quantum	mechanics,	and	its	discovery	was	a	significant	landmark	in	the	development	of	the	subject.
The	equation	is	named	after	Erwin	Schrödinger,	who	postulated	the	equation	in	1925,	and	published	it	in	1926,	forming	the	basis	for	the	work	that	resulted	in	his	Nobel	Prize	in	Physics	in	1933.[2][3]	Conceptually,	the	Schrödinger	equation	is	the	quantum	counterpart	of	Newton's	second	law	in	classical	mechanics.	Given	a	set	of	known	initial
conditions,	Newton's	second	law	makes	a	mathematical	prediction	as	to	what	path	a	given	physical	system	will	take	over	time.	The	Schrödinger	equation	gives	the	evolution	over	time	of	a	wave	function,	the	quantum-mechanical	characterization	of	an	isolated	physical	system.	The	equation	can	be	derived	from	the	fact	that	the	time-evolution	operator
must	be	unitary,	and	must	therefore	be	generated	by	the	exponential	of	a	self-adjoint	operator,	which	is	the	quantum	Hamiltonian.	The	Schrödinger	equation	is	not	the	only	way	to	study	quantum	mechanical	systems	and	make	predictions.	The	other	formulations	of	quantum	mechanics	include	matrix	mechanics,	introduced	by	Werner	Heisenberg,	and
the	path	integral	formulation,	developed	chiefly	by	Richard	Feynman.	Paul	Dirac	incorporated	matrix	mechanics	and	the	Schrödinger	equation	into	a	single	formulation.	When	these	approaches	are	compared,	the	use	of	the	Schrödinger	equation	is	sometimes	called	"wave	mechanics".	Definition	Preliminaries	Complex	plot	of	a	wave	function	that
satisfies	the	nonrelativistic	Schrödinger	equation	with	V	=	0.	In	other	words,	this	corresponds	to	a	particle	traveling	freely	through	empty	space.	Introductory	courses	on	physics	or	chemistry	typically	introduce	the	Schrödinger	equation	in	a	way	that	can	be	appreciated	knowing	only	the	concepts	and	notations	of	basic	calculus,	particularly	derivatives
with	respect	to	space	and	time.	A	special	case	of	the	Schrödinger	equation	that	admits	a	statement	in	those	terms	is	the	position-space	Schrödinger	equation	for	a	single	nonrelativistic	particle	in	one	dimension:	i	ℏ	∂	∂	t	Ψ	(	x	,	t	)	=	[	−	ℏ	2	2	m	∂	2	∂	x	2	+	V	(	x	,	t	)	]	Ψ	(	x	,	t	)	.	{\displaystyle	i\hbar	{\frac	{\partial	}{\partial	t}}\Psi	(x,t)=\left[-{\frac
{\hbar	^{2}}{2m}}{\frac	{\partial	^{2}}{\partial	x^{2}}}+V(x,t)\right]\Psi	(x,t).}	Here,	Ψ	(	x	,	t	)	{\displaystyle	\Psi	(x,t)}	is	a	wave	function,	a	function	that	assigns	a	complex	number	to	each	point	x	{\displaystyle	x}	at	each	time	t	{\displaystyle	t}	.	The	parameter	m	{\displaystyle	m}	is	the	mass	of	the	particle,	and	V	(	x	,	t	)	{\displaystyle	V(x,t)}	is
the	potential	that	represents	the	environment	in	which	the	particle	exists.	The	constant	i	{\displaystyle	i}	is	the	imaginary	unit,	and	ℏ	{\displaystyle	\hbar	}	is	the	reduced	Planck	constant,	which	has	units	of	action	(energy	multiplied	by	time).	Broadening	beyond	this	simple	case,	the	mathematical	formulation	of	quantum	mechanics	developed	by	Paul
Dirac,[4]	David	Hilbert,[5]	John	von	Neumann,[6]	and	Hermann	Weyl[7]	defines	the	state	of	a	quantum	mechanical	system	to	be	a	vector	|	ψ	⟩	{\displaystyle	|\psi	\rangle	}	belonging	to	a	(separable)	Hilbert	space	H	{\displaystyle	{\mathcal	{H}}}	.	This	vector	is	postulated	to	be	normalized	under	the	Hilbert's	space	inner	product,	that	is,	in	Dirac
notation	it	obeys	⟨	ψ	|	ψ	⟩	=	1	{\displaystyle	\langle	\psi	|\psi	\rangle	=1}	.	The	exact	nature	of	this	Hilbert	space	is	dependent	on	the	system	–	for	example,	for	describing	position	and	momentum	the	Hilbert	space	is	the	space	of	complex	square-integrable	functions	L	2	(	C	)	{\displaystyle	L^{2}(\mathbb	{C}	)}	,	while	the	Hilbert	space	for	the	spin	of	a
single	proton	is	simply	the	space	of	two-dimensional	complex	vectors	C	2	{\displaystyle	\mathbb	{C}	^{2}}	with	the	usual	inner	product.	Physical	quantities	of	interest	–	position,	momentum,	energy,	spin	–	are	represented	by	"observables",	which	are	Hermitian	(more	precisely,	self-adjoint)	linear	operators	acting	on	the	Hilbert	space.	A	wave
function	can	be	an	eigenvector	of	an	observable,	in	which	case	it	is	called	an	eigenstate,	and	the	associated	eigenvalue	corresponds	to	the	value	of	the	observable	in	that	eigenstate.	More	generally,	a	quantum	state	will	be	a	linear	combination	of	the	eigenstates,	known	as	a	quantum	superposition.	When	an	observable	is	measured,	the	result	will	be
one	of	its	eigenvalues	with	probability	given	by	the	Born	rule:	in	the	simplest	case	the	eigenvalue	λ	{\displaystyle	\lambda	}	is	non-degenerate	and	the	probability	is	given	by	|	⟨	λ	|	ψ	⟩	|	2	{\displaystyle	|\langle	\lambda	|\psi	\rangle	|^{2}}	,	where	|	λ	⟩	{\displaystyle	|\lambda	\rangle	}	is	its	associated	eigenvector.	More	generally,	the	eigenvalue	is
degenerate	and	the	probability	is	given	by	⟨	ψ	|	P	λ	|	ψ	⟩	{\displaystyle	\langle	\psi	|P_{\lambda	}|\psi	\rangle	}	,	where	P	λ	{\displaystyle	P_{\lambda	}}	is	the	projector	onto	its	associated	eigenspace.[note	1]	A	momentum	eigenstate	would	be	a	perfectly	monochromatic	wave	of	infinite	extent,	which	is	not	square-integrable.	Likewise,	a	position
eigenstate	would	be	a	Dirac	delta	distribution,	not	square-integrable	and	technically	not	a	function	at	all.	Consequently,	neither	can	belong	to	the	particle's	Hilbert	space.	Physicists	sometimes	introduce	fictitious	"bases"	for	a	Hilbert	space	comprising	elements	outside	that	space.	These	are	invented	for	calculational	convenience	and	do	not	represent
physical	states.[8]: 100–105 	Thus,	a	position-space	wave	function	Ψ	(	x	,	t	)	{\displaystyle	\Psi	(x,t)}	as	used	above	can	be	written	as	the	inner	product	of	a	time-dependent	state	vector	|	Ψ	(	t	)	⟩	{\displaystyle	|\Psi	(t)\rangle	}	with	unphysical	but	convenient	"position	eigenstates"	|	x	⟩	{\displaystyle	|x\rangle	}	:	Ψ	(	x	,	t	)	=	⟨	x	|	Ψ	(	t	)	⟩	.	{\displaystyle	\Psi
(x,t)=\langle	x|\Psi	(t)\rangle	.}	Time-dependent	equation	The	form	of	the	Schrödinger	equation	depends	on	the	physical	situation.	The	most	general	form	is	the	time-dependent	Schrödinger	equation,	which	gives	a	description	of	a	system	evolving	with	time:[9]: 143 	Time-dependent	Schrödinger	equation	(general)	i	ℏ	d	d	t	|	Ψ	(	t	)	⟩	=	H	^	|	Ψ	(	t	)	⟩
{\displaystyle	i\hbar	{\frac	{d}{dt}}\vert	\Psi	(t)\rangle	={\hat	{H}}\vert	\Psi	(t)\rangle	}	where	t	{\displaystyle	t}	is	time,	|	Ψ	(	t	)	⟩	{\displaystyle	\vert	\Psi	(t)\rangle	}	is	the	state	vector	of	the	quantum	system	(	Ψ	{\displaystyle	\Psi	}	being	the	Greek	letter	psi),	and	H	^	{\displaystyle	{\hat	{H}}}	is	an	observable,	the	Hamiltonian	operator.	Each	of
these	three	rows	is	a	wave	function	which	satisfies	the	time-dependent	Schrödinger	equation	for	a	harmonic	oscillator.	Left:	The	real	part	(blue)	and	imaginary	part	(red)	of	the	wave	function.	Right:	The	probability	distribution	of	finding	the	particle	with	this	wave	function	at	a	given	position.	The	top	two	rows	are	examples	of	stationary	states,	which
correspond	to	standing	waves.	The	bottom	row	is	an	example	of	a	state	which	is	not	a	stationary	state.	The	right	column	illustrates	why	stationary	states	are	called	"stationary".	The	term	"Schrödinger	equation"	can	refer	to	both	the	general	equation,	or	the	specific	nonrelativistic	version.	The	general	equation	is	indeed	quite	general,	used	throughout
quantum	mechanics,	for	everything	from	the	Dirac	equation	to	quantum	field	theory,	by	plugging	in	diverse	expressions	for	the	Hamiltonian.	The	specific	nonrelativistic	version	is	an	approximation	that	yields	accurate	results	in	many	situations,	but	only	to	a	certain	extent	(see	relativistic	quantum	mechanics	and	relativistic	quantum	field	theory).	To
apply	the	Schrödinger	equation,	write	down	the	Hamiltonian	for	the	system,	accounting	for	the	kinetic	and	potential	energies	of	the	particles	constituting	the	system,	then	insert	it	into	the	Schrödinger	equation.	The	resulting	partial	differential	equation	is	solved	for	the	wave	function,	which	contains	information	about	the	system.	In	practice,	the
square	of	the	absolute	value	of	the	wave	function	at	each	point	is	taken	to	define	a	probability	density	function.	For	example,	given	a	wave	function	in	position	space	Ψ	(	x	,	t	)	{\displaystyle	\Psi	(x,t)}	as	above,	we	have	Pr	(	x	,	t	)	=	|	Ψ	(	x	,	t	)	|	2	.	{\displaystyle	\Pr(x,t)=|\Psi	(x,t)|^{2}.}	Time-independent	equation	The	time-dependent	Schrödinger
equation	described	above	predicts	that	wave	functions	can	form	standing	waves,	called	stationary	states.	These	states	are	particularly	important	as	their	individual	study	later	simplifies	the	task	of	solving	the	time-dependent	Schrödinger	equation	for	any	state.	Stationary	states	can	also	be	described	by	a	simpler	form	of	the	Schrödinger	equation,	the
time-independent	Schrödinger	equation.	Time-independent	Schrödinger	equation	(general)	H	^		|	Ψ	⟩	=	E	|	Ψ	⟩	{\displaystyle	\operatorname	{\hat	{H}}	|\Psi	\rangle	=E|\Psi	\rangle	}	where	E	{\displaystyle	E}	is	the	energy	of	the	system.	This	is	only	used	when	the	Hamiltonian	itself	is	not	dependent	on	time	explicitly.	However,	even	in	this	case	the
total	wave	function	is	dependent	on	time	as	explained	in	the	section	on	linearity	below.	In	the	language	of	linear	algebra,	this	equation	is	an	eigenvalue	equation.	Therefore,	the	wave	function	is	an	eigenfunction	of	the	Hamiltonian	operator	with	corresponding	eigenvalue(s)	E	{\displaystyle	E}	.	Properties	Linearity	The	Schrödinger	equation	is	a	linear
differential	equation,	meaning	that	if	two	state	vectors	|	ψ	1	⟩	{\displaystyle	|\psi	_{1}\rangle	}	and	|	ψ	2	⟩	{\displaystyle	|\psi	_{2}\rangle	}	are	solutions,	then	so	is	any	linear	combination	|	ψ	⟩	=	a	|	ψ	1	⟩	+	b	|	ψ	2	⟩	{\displaystyle	|\psi	\rangle	=a|\psi	_{1}\rangle	+b|\psi	_{2}\rangle	}	of	the	two	where	a	and	b	are	any	complex	numbers.[10]: 25 
Moreover,	the	sum	can	be	extended	for	any	number	of	state	vectors.	This	property	allows	superpositions	of	quantum	states	to	be	solutions	of	the	Schrödinger	equation.	Even	more	generally,	it	holds	that	a	general	solution	to	the	Schrödinger	equation	can	be	found	by	taking	a	weighted	sum	over	a	basis	of	states.	A	choice	often	employed	is	the	basis	of
energy	eigenstates,	which	are	solutions	of	the	time-independent	Schrödinger	equation.	In	this	basis,	a	time-dependent	state	vector	|	Ψ	(	t	)	⟩	{\displaystyle	|\Psi	(t)\rangle	}	can	be	written	as	the	linear	combination	|	Ψ	(	t	)	⟩	=	∑	n	A	n	e	−	i	E	n	t	/	ℏ	|	ψ	E	n	⟩	,	{\displaystyle	|\Psi	(t)\rangle	=\sum	_{n}A_{n}e^{{-iE_{n}t}/\hbar	}|\psi	_{E_{n}}\rangle	,}
where	A	n	{\displaystyle	A_{n}}	are	complex	numbers	and	the	vectors	|	ψ	E	n	⟩	{\displaystyle	|\psi	_{E_{n}}\rangle	}	are	solutions	of	the	time-independent	equation	H	^	|	ψ	E	n	⟩	=	E	n	|	ψ	E	n	⟩	{\displaystyle	{\hat	{H}}|\psi	_{E_{n}}\rangle	=E_{n}|\psi	_{E_{n}}\rangle	}	.	Unitarity	Further	information:	Wigner's	theorem	Holding	the	Hamiltonian	H
^	{\displaystyle	{\hat	{H}}}	constant,	the	Schrödinger	equation	has	the	solution[9]	|	Ψ	(	t	)	⟩	=	e	−	i	H	^	t	/	ℏ	|	Ψ	(	0	)	⟩	.	{\displaystyle	|\Psi	(t)\rangle	=e^{-i{\hat	{H}}t/\hbar	}|\Psi	(0)\rangle	.}	The	operator	U	^	(	t	)	=	e	−	i	H	^	t	/	ℏ	{\displaystyle	{\hat	{U}}(t)=e^{-i{\hat	{H}}t/\hbar	}}	is	known	as	the	time-evolution	operator,	and	it	is	unitary:	it
preserves	the	inner	product	between	vectors	in	the	Hilbert	space.[10]	Unitarity	is	a	general	feature	of	time	evolution	under	the	Schrödinger	equation.	If	the	initial	state	is	|	Ψ	(	0	)	⟩	{\displaystyle	|\Psi	(0)\rangle	}	,	then	the	state	at	a	later	time	t	{\displaystyle	t}	will	be	given	by	|	Ψ	(	t	)	⟩	=	U	^	(	t	)	|	Ψ	(	0	)	⟩	{\displaystyle	|\Psi	(t)\rangle	={\hat	{U}}
(t)|\Psi	(0)\rangle	}	for	some	unitary	operator	U	^	(	t	)	{\displaystyle	{\hat	{U}}(t)}	.	Conversely,	suppose	that	U	^	(	t	)	{\displaystyle	{\hat	{U}}(t)}	is	a	continuous	family	of	unitary	operators	parameterized	by	t	{\displaystyle	t}	.	Without	loss	of	generality,[11]	the	parameterization	can	be	chosen	so	that	U	^	(	0	)	{\displaystyle	{\hat	{U}}(0)}	is	the
identity	operator	and	that	U	^	(	t	/	N	)	N	=	U	^	(	t	)	{\displaystyle	{\hat	{U}}(t/N)^{N}={\hat	{U}}(t)}	for	any	N	>	0	{\displaystyle	N>0}	.	Then	U	^	(	t	)	{\displaystyle	{\hat	{U}}(t)}	depends	upon	the	parameter	t	{\displaystyle	t}	in	such	a	way	that	U	^	(	t	)	=	e	−	i	G	^	t	{\displaystyle	{\hat	{U}}(t)=e^{-i{\hat	{G}}t}}	for	some	self-adjoint
operator	G	^	{\displaystyle	{\hat	{G}}}	,	called	the	generator	of	the	family	U	^	(	t	)	{\displaystyle	{\hat	{U}}(t)}	.	A	Hamiltonian	is	just	such	a	generator	(up	to	the	factor	of	Planck's	constant	that	would	be	set	to	1	in	natural	units).	To	see	that	the	generator	is	Hermitian,	note	that	with	U	^	(	δ	t	)	≈	U	^	(	0	)	−	i	G	^	δ	t	{\displaystyle	{\hat	{U}}(\delta
t)\approx	{\hat	{U}}(0)-i{\hat	{G}}\delta	t}	,	we	have	U	^	(	δ	t	)	†	U	^	(	δ	t	)	≈	(	U	^	(	0	)	†	+	i	G	^	†	δ	t	)	(	U	^	(	0	)	−	i	G	^	δ	t	)	=	I	+	i	δ	t	(	G	^	†	−	G	^	)	+	O	(	δ	t	2	)	,	{\displaystyle	{\hat	{U}}(\delta	t)^{\dagger	}{\hat	{U}}(\delta	t)\approx	({\hat	{U}}(0)^{\dagger	}+i{\hat	{G}}^{\dagger	}\delta	t)({\hat	{U}}(0)-i{\hat	{G}}\delta	t)=I+i\delta
t({\hat	{G}}^{\dagger	}-{\hat	{G}})+O(\delta	t^{2}),}	so	U	^	(	t	)	{\displaystyle	{\hat	{U}}(t)}	is	unitary	only	if,	to	first	order,	its	derivative	is	Hermitian.[12]	Changes	of	basis	The	Schrödinger	equation	is	often	presented	using	quantities	varying	as	functions	of	position,	but	as	a	vector-operator	equation	it	has	a	valid	representation	in	any	arbitrary
complete	basis	of	kets	in	Hilbert	space.	As	mentioned	above,	"bases"	that	lie	outside	the	physical	Hilbert	space	are	also	employed	for	calculational	purposes.	This	is	illustrated	by	the	position-space	and	momentum-space	Schrödinger	equations	for	a	nonrelativistic,	spinless	particle.[8]: 182 	The	Hilbert	space	for	such	a	particle	is	the	space	of	complex
square-integrable	functions	on	three-dimensional	Euclidean	space,	and	its	Hamiltonian	is	the	sum	of	a	kinetic-energy	term	that	is	quadratic	in	the	momentum	operator	and	a	potential-energy	term:	i	ℏ	d	d	t	|	Ψ	(	t	)	⟩	=	(	1	2	m	p	^	2	+	V	^	)	|	Ψ	(	t	)	⟩	.	{\displaystyle	i\hbar	{\frac	{d}{dt}}|\Psi	(t)\rangle	=\left({\frac	{1}{2m}}{\hat	{p}}^{2}+{\hat
{V}}\right)|\Psi	(t)\rangle	.}	Writing	r	{\displaystyle	\mathbf	{r}	}	for	a	three-dimensional	position	vector	and	p	{\displaystyle	\mathbf	{p}	}	for	a	three-dimensional	momentum	vector,	the	position-space	Schrödinger	equation	is	i	ℏ	∂	∂	t	Ψ	(	r	,	t	)	=	−	ℏ	2	2	m	∇	2	Ψ	(	r	,	t	)	+	V	(	r	)	Ψ	(	r	,	t	)	.	{\displaystyle	i\hbar	{\frac	{\partial	}{\partial	t}}\Psi
(\mathbf	{r}	,t)=-{\frac	{\hbar	^{2}}{2m}}abla	^{2}\Psi	(\mathbf	{r}	,t)+V(\mathbf	{r}	)\Psi	(\mathbf	{r}	,t).}	The	momentum-space	counterpart	involves	the	Fourier	transforms	of	the	wave	function	and	the	potential:	i	ℏ	∂	∂	t	Ψ	~	(	p	,	t	)	=	p	2	2	m	Ψ	~	(	p	,	t	)	+	(	2	π	ℏ	)	−	3	/	2	∫	d	3	p	′	V	~	(	p	−	p	′	)	Ψ	~	(	p	′	,	t	)	.	{\displaystyle	i\hbar	{\frac
{\partial	}{\partial	t}}{\tilde	{\Psi	}}(\mathbf	{p}	,t)={\frac	{\mathbf	{p}	^{2}}{2m}}{\tilde	{\Psi	}}(\mathbf	{p}	,t)+(2\pi	\hbar	)^{-3/2}\int	d^{3}\mathbf	{p}	'\,{\tilde	{V}}(\mathbf	{p}	-\mathbf	{p}	'){\tilde	{\Psi	}}(\mathbf	{p}	',t).}	The	functions	Ψ	(	r	,	t	)	{\displaystyle	\Psi	(\mathbf	{r}	,t)}	and	Ψ	~	(	p	,	t	)	{\displaystyle	{\tilde	{\Psi	}}
(\mathbf	{p}	,t)}	are	derived	from	|	Ψ	(	t	)	⟩	{\displaystyle	|\Psi	(t)\rangle	}	by	Ψ	(	r	,	t	)	=	⟨	r	|	Ψ	(	t	)	⟩	,	{\displaystyle	\Psi	(\mathbf	{r}	,t)=\langle	\mathbf	{r}	|\Psi	(t)\rangle	,}	Ψ	~	(	p	,	t	)	=	⟨	p	|	Ψ	(	t	)	⟩	,	{\displaystyle	{\tilde	{\Psi	}}(\mathbf	{p}	,t)=\langle	\mathbf	{p}	|\Psi	(t)\rangle	,}	where	|	r	⟩	{\displaystyle	|\mathbf	{r}	\rangle	}	and	|	p	⟩
{\displaystyle	|\mathbf	{p}	\rangle	}	do	not	belong	to	the	Hilbert	space	itself,	but	have	well-defined	inner	products	with	all	elements	of	that	space.	When	restricted	from	three	dimensions	to	one,	the	position-space	equation	is	just	the	first	form	of	the	Schrödinger	equation	given	above.	The	relation	between	position	and	momentum	in	quantum
mechanics	can	be	appreciated	in	a	single	dimension.	In	canonical	quantization,	the	classical	variables	x	{\displaystyle	x}	and	p	{\displaystyle	p}	are	promoted	to	self-adjoint	operators	x	^	{\displaystyle	{\hat	{x}}}	and	p	^	{\displaystyle	{\hat	{p}}}	that	satisfy	the	canonical	commutation	relation	[	x	^	,	p	^	]	=	i	ℏ	.	{\displaystyle	[{\hat	{x}},{\hat
{p}}]=i\hbar	.}	This	implies	that[8]: 190 	⟨	x	|	p	^	|	Ψ	⟩	=	−	i	ℏ	d	d	x	Ψ	(	x	)	,	{\displaystyle	\langle	x|{\hat	{p}}|\Psi	\rangle	=-i\hbar	{\frac	{d}{dx}}\Psi	(x),}	so	the	action	of	the	momentum	operator	p	^	{\displaystyle	{\hat	{p}}}	in	the	position-space	representation	is	−	i	ℏ	d	d	x	{\textstyle	-i\hbar	{\frac	{d}{dx}}}	.	Thus,	p	^	2	{\displaystyle	{\hat
{p}}^{2}}	becomes	a	second	derivative,	and	in	three	dimensions,	the	second	derivative	becomes	the	Laplacian	∇	2	{\displaystyle	abla	^{2}}	.	The	canonical	commutation	relation	also	implies	that	the	position	and	momentum	operators	are	Fourier	conjugates	of	each	other.	Consequently,	functions	originally	defined	in	terms	of	their	position
dependence	can	be	converted	to	functions	of	momentum	using	the	Fourier	transform.	In	solid-state	physics,	the	Schrödinger	equation	is	often	written	for	functions	of	momentum,	as	Bloch's	theorem	ensures	the	periodic	crystal	lattice	potential	couples	Ψ	~	(	p	)	{\displaystyle	{\tilde	{\Psi	}}(p)}	with	Ψ	~	(	p	+	K	)	{\displaystyle	{\tilde	{\Psi	}}(p+K)}
for	only	discrete	reciprocal	lattice	vectors	K	{\displaystyle	K}	.	This	makes	it	convenient	to	solve	the	momentum-space	Schrödinger	equation	at	each	point	in	the	Brillouin	zone	independently	of	the	other	points	in	the	Brillouin	zone.	Probability	current	Main	articles:	Probability	current	and	Continuity	equation	The	Schrödinger	equation	is	consistent
with	local	probability	conservation.[8]: 238 	Multiplying	the	Schrödinger	equation	on	the	right	by	the	complex	conjugate	wave	function,	and	multiplying	the	wave	function	to	the	left	of	the	complex	conjugate	of	the	Schrödinger	equation,	and	subtracting,	gives	the	continuity	equation	for	probability:	∂	∂	t	ρ	(	r	,	t	)	+	∇	⋅	j	=	0	,	{\displaystyle	{\frac	{\partial
}{\partial	t}}\rho	\left(\mathbf	{r}	,t\right)+abla	\cdot	\mathbf	{j}	=0,}	where	ρ	=	|	Ψ	|	2	=	Ψ	∗	(	r	,	t	)	Ψ	(	r	,	t	)	{\displaystyle	\rho	=|\Psi	|^{2}=\Psi	^{*}(\mathbf	{r}	,t)\Psi	(\mathbf	{r}	,t)}	is	the	probability	density	(probability	per	unit	volume,	*	denotes	complex	conjugate),	and	j	=	1	2	m	(	Ψ	∗	p	^	Ψ	−	Ψ	p	^	Ψ	∗	)	{\displaystyle	\mathbf	{j}	=
{\frac	{1}{2m}}\left(\Psi	^{*}{\hat	{\mathbf	{p}	}}\Psi	-\Psi	{\hat	{\mathbf	{p}	}}\Psi	^{*}\right)}	is	the	probability	current	(flow	per	unit	area).	Separation	of	variables	If	the	Hamiltonian	is	not	an	explicit	function	of	time,	the	equation	is	separable	into	a	product	of	spatial	and	temporal	parts.[13]	Solving	the	equation	by	separation	of	variables
means	seeking	a	solution	of	the	form	Ψ	(	r	,	t	)	=	ψ	(	r	)	τ	(	t	)	,	{\displaystyle	\Psi	(\mathbf	{r}	,t)=\psi	(\mathbf	{r}	)\tau	(t),}	where	ψ	(	r	)	{\displaystyle	\psi	(\mathbf	{r}	)}	is	a	function	of	all	the	spatial	coordinate(s)	of	the	particle(s)	constituting	the	system	only,	and	τ	(	t	)	{\displaystyle	\tau	(t)}	is	a	function	of	time	only.	Substituting	this	expression
for	Ψ	{\displaystyle	\Psi	}	into	the	Schrödinger	equation	yields	Ψ	(	r	,	t	)	=	ψ	(	r	)	e	−	i	E	t	/	ℏ	.	{\displaystyle	\Psi	(\mathbf	{r}	,t)=\psi	(\mathbf	{r}	)e^{-i{Et/\hbar	}}.}	A	solution	of	this	type	is	called	stationary,	since	the	only	time	dependence	is	a	phase	factor	that	cancels	when	the	probability	density	is	calculated	via	the	Born	rule.[9]: 143ff 	This
generalizes	to	any	number	of	particles	in	any	number	of	dimensions	(in	a	time-independent	potential):	the	standing	wave	solutions	of	the	time-dependent	equation	are	the	states	with	definite	energy,	instead	of	a	probability	distribution	of	different	energies.	In	physics,	these	standing	waves	are	called	"stationary	states"	or	"energy	eigenstates";	in
chemistry	they	are	called	"atomic	orbitals"	or	"molecular	orbitals".	Superpositions	of	energy	eigenstates	change	their	properties	according	to	the	relative	phases	between	the	energy	levels.	The	energy	eigenstates	form	a	basis:	any	wave	function	may	be	written	as	a	sum	over	the	discrete	energy	states	or	an	integral	over	continuous	energy	states,	or
more	generally	as	an	integral	over	a	measure.	This	is	the	spectral	theorem	in	mathematics,	and	in	a	finite-dimensional	state	space	it	is	just	a	statement	of	the	completeness	of	the	eigenvectors	of	a	Hermitian	matrix.	Separation	of	variables	can	also	be	a	useful	method	for	the	time-independent	Schrödinger	equation.	For	example,	depending	on	the
symmetry	of	the	problem,	the	Cartesian	axes	might	be	separated,	ψ	(	r	)	=	ψ	x	(	x	)	ψ	y	(	y	)	ψ	z	(	z	)	,	{\displaystyle	\psi	(\mathbf	{r}	)=\psi	_{x}(x)\psi	_{y}(y)\psi	_{z}(z),}	or	radial	and	angular	coordinates	might	be	separated:	ψ	(	r	)	=	ψ	r	(	r	)	ψ	θ	(	θ	)	ψ	ϕ	(	ϕ	)	.	{\displaystyle	\psi	(\mathbf	{r}	)=\psi	_{r}(r)\psi	_{\theta	}(\theta	)\psi	_{\phi	}(\phi	).}
Examples	See	also:	List	of	quantum-mechanical	systems	with	analytical	solutions	Particle	in	a	box	1-dimensional	potential	energy	box	(or	infinite	potential	well)	Main	article:	Particle	in	a	box	The	particle	in	a	one-dimensional	potential	energy	box	is	the	most	mathematically	simple	example	where	restraints	lead	to	the	quantization	of	energy	levels.	The
box	is	defined	as	having	zero	potential	energy	inside	a	certain	region	and	infinite	potential	energy	outside.[8]: 77–78 	For	the	one-dimensional	case	in	the	x	{\displaystyle	x}	direction,	the	time-independent	Schrödinger	equation	may	be	written	−	ℏ	2	2	m	d	2	ψ	d	x	2	=	E	ψ	.	{\displaystyle	-{\frac	{\hbar	^{2}}{2m}}{\frac	{d^{2}\psi	}{dx^{2}}}=E\psi
.}	With	the	differential	operator	defined	by	p	^	x	=	−	i	ℏ	d	d	x	{\displaystyle	{\hat	{p}}_{x}=-i\hbar	{\frac	{d}{dx}}}	the	previous	equation	is	evocative	of	the	classic	kinetic	energy	analogue,	1	2	m	p	^	x	2	=	E	,	{\displaystyle	{\frac	{1}{2m}}{\hat	{p}}_{x}^{2}=E,}	with	state	ψ	{\displaystyle	\psi	}	in	this	case	having	energy	E	{\displaystyle	E}
coincident	with	the	kinetic	energy	of	the	particle.	The	general	solutions	of	the	Schrödinger	equation	for	the	particle	in	a	box	are	ψ	(	x	)	=	A	e	i	k	x	+	B	e	−	i	k	x	E	=	ℏ	2	k	2	2	m	{\displaystyle	\psi	(x)=Ae^{ikx}+Be^{-ikx}\qquad	\qquad	E={\frac	{\hbar	^{2}k^{2}}{2m}}}	or,	from	Euler's	formula,	ψ	(	x	)	=	C	sin		(	k	x	)	+	D	cos		(	k	x	)	.	{\displaystyle
\psi	(x)=C\sin(kx)+D\cos(kx).}	The	infinite	potential	walls	of	the	box	determine	the	values	of	C	,	D	,	{\displaystyle	C,D,}	and	k	{\displaystyle	k}	at	x	=	0	{\displaystyle	x=0}	and	x	=	L	{\displaystyle	x=L}	where	ψ	{\displaystyle	\psi	}	must	be	zero.	Thus,	at	x	=	0	{\displaystyle	x=0}	,	ψ	(	0	)	=	0	=	C	sin		(	0	)	+	D	cos		(	0	)	=	D	{\displaystyle	\psi
(0)=0=C\sin(0)+D\cos(0)=D}	and	D	=	0	{\displaystyle	D=0}	.	At	x	=	L	{\displaystyle	x=L}	,	ψ	(	L	)	=	0	=	C	sin		(	k	L	)	,	{\displaystyle	\psi	(L)=0=C\sin(kL),}	in	which	C	{\displaystyle	C}	cannot	be	zero	as	this	would	conflict	with	the	postulate	that	ψ	{\displaystyle	\psi	}	has	norm	1.	Therefore,	since	sin		(	k	L	)	=	0	{\displaystyle	\sin(kL)=0}	,	k	L
{\displaystyle	kL}	must	be	an	integer	multiple	of	π	{\displaystyle	\pi	}	,	k	=	n	π	L	n	=	1	,	2	,	3	,	…	.	{\displaystyle	k={\frac	{n\pi	}{L}}\qquad	\qquad	n=1,2,3,\ldots	.}	This	constraint	on	k	{\displaystyle	k}	implies	a	constraint	on	the	energy	levels,	yielding	E	n	=	ℏ	2	π	2	n	2	2	m	L	2	=	n	2	h	2	8	m	L	2	.	{\displaystyle	E_{n}={\frac	{\hbar	^{2}\pi
^{2}n^{2}}{2mL^{2}}}={\frac	{n^{2}h^{2}}{8mL^{2}}}.}	A	finite	potential	well	is	the	generalization	of	the	infinite	potential	well	problem	to	potential	wells	having	finite	depth.	The	finite	potential	well	problem	is	mathematically	more	complicated	than	the	infinite	particle-in-a-box	problem	as	the	wave	function	is	not	pinned	to	zero	at	the	walls
of	the	well.	Instead,	the	wave	function	must	satisfy	more	complicated	mathematical	boundary	conditions	as	it	is	nonzero	in	regions	outside	the	well.	Another	related	problem	is	that	of	the	rectangular	potential	barrier,	which	furnishes	a	model	for	the	quantum	tunneling	effect	that	plays	an	important	role	in	the	performance	of	modern	technologies	such
as	flash	memory	and	scanning	tunneling	microscopy.	Harmonic	oscillator	A	harmonic	oscillator	in	classical	mechanics	(A–B)	and	quantum	mechanics	(C–H).	In	(A–B),	a	ball,	attached	to	a	spring,	oscillates	back	and	forth.	(C–H)	are	six	solutions	to	the	Schrödinger	Equation	for	this	situation.	The	horizontal	axis	is	position,	the	vertical	axis	is	the	real	part
(blue)	or	imaginary	part	(red)	of	the	wave	function.	Stationary	states,	or	energy	eigenstates,	which	are	solutions	to	the	time-independent	Schrödinger	equation,	are	shown	in	C,	D,	E,	F,	but	not	G	or	H.	Main	article:	Quantum	harmonic	oscillator	The	Schrödinger	equation	for	this	situation	is	E	ψ	=	−	ℏ	2	2	m	d	2	d	x	2	ψ	+	1	2	m	ω	2	x	2	ψ	,	{\displaystyle
E\psi	=-{\frac	{\hbar	^{2}}{2m}}{\frac	{d^{2}}{dx^{2}}}\psi	+{\frac	{1}{2}}m\omega	^{2}x^{2}\psi	,}	where	x	{\displaystyle	x}	is	the	displacement	and	ω	{\displaystyle	\omega	}	the	angular	frequency.	Furthermore,	it	can	be	used	to	describe	approximately	a	wide	variety	of	other	systems,	including	vibrating	atoms,	molecules,[14]	and	atoms
or	ions	in	lattices,[15]	and	approximating	other	potentials	near	equilibrium	points.	It	is	also	the	basis	of	perturbation	methods	in	quantum	mechanics.	The	solutions	in	position	space	are	ψ	n	(	x	)	=	1	2	n	n	!			(	m	ω	π	ℏ	)	1	/	4			e	−	m	ω	x	2	2	ℏ			H	n	(	m	ω	ℏ	x	)	,	{\displaystyle	\psi	_{n}(x)={\sqrt	{\frac	{1}{2^{n}\,n!}}}\	\left({\frac	{m\omega	}{\pi	\hbar
}}\right)^{1/4}\	e^{-{\frac	{m\omega	x^{2}}{2\hbar	}}}\	{\mathcal	{H}}_{n}\left({\sqrt	{\frac	{m\omega	}{\hbar	}}}x\right),}	where	n	∈	{	0	,	1	,	2	,	…	}	{\displaystyle	n\in	\{0,1,2,\ldots	\}}	,	and	the	functions	H	n	{\displaystyle	{\mathcal	{H}}_{n}}	are	the	Hermite	polynomials	of	order	n	{\displaystyle	n}	.	The	solution	set	may	be	generated	by
ψ	n	(	x	)	=	1	n	!	(	m	ω	2	ℏ	)	n	(	x	−	ℏ	m	ω	d	d	x	)	n	(	m	ω	π	ℏ	)	1	4	e	−	m	ω	x	2	2	ℏ	.	{\displaystyle	\psi	_{n}(x)={\frac	{1}{\sqrt	{n!}}}\left({\sqrt	{\frac	{m\omega	}{2\hbar	}}}\right)^{n}\left(x-{\frac	{\hbar	}{m\omega	}}{\frac	{d}{dx}}\right)^{n}\left({\frac	{m\omega	}{\pi	\hbar	}}\right)^{\frac	{1}{4}}e^{\frac	{-m\omega	x^{2}}{2\hbar	}}.}
The	eigenvalues	are	E	n	=	(	n	+	1	2	)	ℏ	ω	.	{\displaystyle	E_{n}=\left(n+{\frac	{1}{2}}\right)\hbar	\omega	.}	The	case	n	=	0	{\displaystyle	n=0}	is	called	the	ground	state,	its	energy	is	called	the	zero-point	energy,	and	the	wave	function	is	a	Gaussian.[16]	The	harmonic	oscillator,	like	the	particle	in	a	box,	illustrates	the	generic	feature	of	the
Schrödinger	equation	that	the	energies	of	bound	eigenstates	are	discretized.[8]: 352 	Hydrogen	atom	The	Schrödinger	equation	for	the	hydrogen	atom	(or	a	hydrogen-like	atom)	is	E	ψ	=	−	ℏ	2	2	μ	∇	2	ψ	−	q	2	4	π	ε	0	r	ψ	{\displaystyle	E\psi	=-{\frac	{\hbar	^{2}}{2\mu	}}abla	^{2}\psi	-{\frac	{q^{2}}{4\pi	\varepsilon	_{0}r}}\psi	}	where	q
{\displaystyle	q}	is	the	electron	charge,	r	{\displaystyle	\mathbf	{r}	}	is	the	position	of	the	electron	relative	to	the	nucleus,	r	=	|	r	|	{\displaystyle	r=|\mathbf	{r}	|}	is	the	magnitude	of	the	relative	position,	the	potential	term	is	due	to	the	Coulomb	interaction,	wherein	ε	0	{\displaystyle	\varepsilon	_{0}}	is	the	permittivity	of	free	space	and	μ	=	m	q	m	p
m	q	+	m	p	{\displaystyle	\mu	={\frac	{m_{q}m_{p}}{m_{q}+m_{p}}}}	is	the	2-body	reduced	mass	of	the	hydrogen	nucleus	(just	a	proton)	of	mass	m	p	{\displaystyle	m_{p}}	and	the	electron	of	mass	m	q	{\displaystyle	m_{q}}	.	The	negative	sign	arises	in	the	potential	term	since	the	proton	and	electron	are	oppositely	charged.	The	reduced	mass	in
place	of	the	electron	mass	is	used	since	the	electron	and	proton	together	orbit	each	other	about	a	common	centre	of	mass,	and	constitute	a	two-body	problem	to	solve.	The	motion	of	the	electron	is	of	principal	interest	here,	so	the	equivalent	one-body	problem	is	the	motion	of	the	electron	using	the	reduced	mass.	The	Schrödinger	equation	for	a
hydrogen	atom	can	be	solved	by	separation	of	variables.[17]	In	this	case,	spherical	polar	coordinates	are	the	most	convenient.	Thus,	ψ	(	r	,	θ	,	φ	)	=	R	(	r	)	Y	ℓ	m	(	θ	,	φ	)	=	R	(	r	)	Θ	(	θ	)	Φ	(	φ	)	,	{\displaystyle	\psi	(r,\theta	,\varphi	)=R(r)Y_{\ell	}^{m}(\theta	,\varphi	)=R(r)\Theta	(\theta	)\Phi	(\varphi	),}	where	R	are	radial	functions	and	Y	l	m	(	θ	,	φ	)
{\displaystyle	Y_{l}^{m}(\theta	,\varphi	)}	are	spherical	harmonics	of	degree	ℓ	{\displaystyle	\ell	}	and	order	m	{\displaystyle	m}	.	This	is	the	only	atom	for	which	the	Schrödinger	equation	has	been	solved	for	exactly.	Multi-electron	atoms	require	approximate	methods.	The	family	of	solutions	are:[18]	ψ	n	ℓ	m	(	r	,	θ	,	φ	)	=	(	2	n	a	0	)	3	(	n	−	ℓ	−	1	)	!	2	n
[	(	n	+	ℓ	)	!	]	e	−	r	/	n	a	0	(	2	r	n	a	0	)	ℓ	L	n	−	ℓ	−	1	2	ℓ	+	1	(	2	r	n	a	0	)	⋅	Y	ℓ	m	(	θ	,	φ	)	{\displaystyle	\psi	_{n\ell	m}(r,\theta	,\varphi	)={\sqrt	{\left({\frac	{2}{na_{0}}}\right)^{3}{\frac	{(n-\ell	-1)!}{2n[(n+\ell	)!]}}}}e^{-r/na_{0}}\left({\frac	{2r}{na_{0}}}\right)^{\ell	}L_{n-\ell	-1}^{2\ell	+1}\left({\frac	{2r}{na_{0}}}\right)\cdot	Y_{\ell	}^{m}
(\theta	,\varphi	)}	where	a	0	=	4	π	ε	0	ℏ	2	m	q	q	2	{\displaystyle	a_{0}={\frac	{4\pi	\varepsilon	_{0}\hbar	^{2}}{m_{q}q^{2}}}}	is	the	Bohr	radius,	L	n	−	ℓ	−	1	2	ℓ	+	1	(	⋯	)	{\displaystyle	L_{n-\ell	-1}^{2\ell	+1}(\cdots	)}	are	the	generalized	Laguerre	polynomials	of	degree	n	−	ℓ	−	1	{\displaystyle	n-\ell	-1}	,	n	,	ℓ	,	m	{\displaystyle	n,\ell	,m}	are	the
principal,	azimuthal,	and	magnetic	quantum	numbers	respectively,	which	take	the	values	n	=	1	,	2	,	3	,	…	,	{\displaystyle	n=1,2,3,\dots	,}	ℓ	=	0	,	1	,	2	,	…	,	n	−	1	,	{\displaystyle	\ell	=0,1,2,\dots	,n-1,}	m	=	−	ℓ	,	…	,	ℓ	.	{\displaystyle	m=-\ell	,\dots	,\ell	.}	Approximate	solutions	It	is	typically	not	possible	to	solve	the	Schrödinger	equation	exactly	for
situations	of	physical	interest.	Accordingly,	approximate	solutions	are	obtained	using	techniques	like	variational	methods	and	WKB	approximation.	It	is	also	common	to	treat	a	problem	of	interest	as	a	small	modification	to	a	problem	that	can	be	solved	exactly,	a	method	known	as	perturbation	theory.	Semiclassical	limit	One	simple	way	to	compare
classical	to	quantum	mechanics	is	to	consider	the	time-evolution	of	the	expected	position	and	expected	momentum,	which	can	then	be	compared	to	the	time-evolution	of	the	ordinary	position	and	momentum	in	classical	mechanics.[19]: 302 	The	quantum	expectation	values	satisfy	the	Ehrenfest	theorem.	For	a	one-dimensional	quantum	particle	moving
in	a	potential	V	{\displaystyle	V}	,	the	Ehrenfest	theorem	says	m	d	d	t	⟨	x	⟩	=	⟨	p	⟩	;	d	d	t	⟨	p	⟩	=	−	⟨	V	′	(	X	)	⟩	.	{\displaystyle	m{\frac	{d}{dt}}\langle	x\rangle	=\langle	p\rangle	;\quad	{\frac	{d}{dt}}\langle	p\rangle	=-\left\langle	V'(X)\right\rangle	.}	Although	the	first	of	these	equations	is	consistent	with	the	classical	behavior,	the	second	is	not:	If	the
pair	(	⟨	X	⟩	,	⟨	P	⟩	)	{\displaystyle	(\langle	X\rangle	,\langle	P\rangle	)}	were	to	satisfy	Newton's	second	law,	the	right-hand	side	of	the	second	equation	would	have	to	be	−	V	′	(	⟨	X	⟩	)	{\displaystyle	-V'\left(\left\langle	X\right\rangle	\right)}	which	is	typically	not	the	same	as	−	⟨	V	′	(	X	)	⟩	{\displaystyle	-\left\langle	V'(X)\right\rangle	}	.	For	a	general	V	′
{\displaystyle	V'}	,	therefore,	quantum	mechanics	can	lead	to	predictions	where	expectation	values	do	not	mimic	the	classical	behavior.	In	the	case	of	the	quantum	harmonic	oscillator,	however,	V	′	{\displaystyle	V'}	is	linear	and	this	distinction	disappears,	so	that	in	this	very	special	case,	the	expected	position	and	expected	momentum	do	exactly
follow	the	classical	trajectories.	For	general	systems,	the	best	we	can	hope	for	is	that	the	expected	position	and	momentum	will	approximately	follow	the	classical	trajectories.	If	the	wave	function	is	highly	concentrated	around	a	point	x	0	{\displaystyle	x_{0}}	,	then	V	′	(	⟨	X	⟩	)	{\displaystyle	V'\left(\left\langle	X\right\rangle	\right)}	and	⟨	V	′	(	X	)	⟩
{\displaystyle	\left\langle	V'(X)\right\rangle	}	will	be	almost	the	same,	since	both	will	be	approximately	equal	to	V	′	(	x	0	)	{\displaystyle	V'(x_{0})}	.	In	that	case,	the	expected	position	and	expected	momentum	will	remain	very	close	to	the	classical	trajectories,	at	least	for	as	long	as	the	wave	function	remains	highly	localized	in	position.	The
Schrödinger	equation	in	its	general	form	i	ℏ	∂	∂	t	Ψ	(	r	,	t	)	=	H	^	Ψ	(	r	,	t	)	{\displaystyle	i\hbar	{\frac	{\partial	}{\partial	t}}\Psi	\left(\mathbf	{r}	,t\right)={\hat	{H}}\Psi	\left(\mathbf	{r}	,t\right)}	is	closely	related	to	the	Hamilton–Jacobi	equation	(HJE)	−	∂	∂	t	S	(	q	i	,	t	)	=	H	(	q	i	,	∂	S	∂	q	i	,	t	)	{\displaystyle	-{\frac	{\partial	}{\partial
t}}S(q_{i},t)=H\left(q_{i},{\frac	{\partial	S}{\partial	q_{i}}},t\right)}	where	S	{\displaystyle	S}	is	the	classical	action	and	H	{\displaystyle	H}	is	the	Hamiltonian	function	(not	operator).[19]: 308 	Here	the	generalized	coordinates	q	i	{\displaystyle	q_{i}}	for	i	=	1	,	2	,	3	{\displaystyle	i=1,2,3}	(used	in	the	context	of	the	HJE)	can	be	set	to	the	position
in	Cartesian	coordinates	as	r	=	(	q	1	,	q	2	,	q	3	)	=	(	x	,	y	,	z	)	{\displaystyle	\mathbf	{r}	=(q_{1},q_{2},q_{3})=(x,y,z)}	.	Substituting	Ψ	=	ρ	(	r	,	t	)	e	i	S	(	r	,	t	)	/	ℏ	{\displaystyle	\Psi	={\sqrt	{\rho	(\mathbf	{r}	,t)}}e^{iS(\mathbf	{r}	,t)/\hbar	}}	where	ρ	{\displaystyle	\rho	}	is	the	probability	density,	into	the	Schrödinger	equation	and	then	taking	the
limit	ℏ	→	0	{\displaystyle	\hbar	\to	0}	in	the	resulting	equation	yield	the	Hamilton–Jacobi	equation.	Density	matrices	Main	article:	Density	matrix	Wave	functions	are	not	always	the	most	convenient	way	to	describe	quantum	systems	and	their	behavior.	When	the	preparation	of	a	system	is	only	imperfectly	known,	or	when	the	system	under	investigation
is	a	part	of	a	larger	whole,	density	matrices	may	be	used	instead.[19]: 74 	A	density	matrix	is	a	positive	semi-definite	operator	whose	trace	is	equal	to	1.	(The	term	"density	operator"	is	also	used,	particularly	when	the	underlying	Hilbert	space	is	infinite-dimensional.)	The	set	of	all	density	matrices	is	convex,	and	the	extreme	points	are	the	operators	that
project	onto	vectors	in	the	Hilbert	space.	These	are	the	density-matrix	representations	of	wave	functions;	in	Dirac	notation,	they	are	written	ρ	^	=	|	Ψ	⟩	⟨	Ψ	|	.	{\displaystyle	{\hat	{\rho	}}=|\Psi	\rangle	\langle	\Psi	|.}	The	density-matrix	analogue	of	the	Schrödinger	equation	for	wave	functions	is[20][21]	i	ℏ	∂	ρ	^	∂	t	=	[	H	^	,	ρ	^	]	,	{\displaystyle	i\hbar
{\frac	{\partial	{\hat	{\rho	}}}{\partial	t}}=[{\hat	{H}},{\hat	{\rho	}}],}	where	the	brackets	denote	a	commutator.	This	is	variously	known	as	the	von	Neumann	equation,	the	Liouville–von	Neumann	equation,	or	just	the	Schrödinger	equation	for	density	matrices.[19]: 312 	If	the	Hamiltonian	is	time-independent,	this	equation	can	be	easily	solved	to
yield	ρ	^	(	t	)	=	e	−	i	H	^	t	/	ℏ	ρ	^	(	0	)	e	i	H	^	t	/	ℏ	.	{\displaystyle	{\hat	{\rho	}}(t)=e^{-i{\hat	{H}}t/\hbar	}{\hat	{\rho	}}(0)e^{i{\hat	{H}}t/\hbar	}.}	More	generally,	if	the	unitary	operator	U	^	(	t	)	{\displaystyle	{\hat	{U}}(t)}	describes	wave	function	evolution	over	some	time	interval,	then	the	time	evolution	of	a	density	matrix	over	that	same
interval	is	given	by	ρ	^	(	t	)	=	U	^	(	t	)	ρ	^	(	0	)	U	^	(	t	)	†	.	{\displaystyle	{\hat	{\rho	}}(t)={\hat	{U}}(t){\hat	{\rho	}}(0){\hat	{U}}(t)^{\dagger	}.}	Unitary	evolution	of	a	density	matrix	conserves	its	von	Neumann	entropy.[19]: 267 	Relativistic	quantum	physics	and	quantum	field	theory	The	one-particle	Schrödinger	equation	described	above	is	valid
essentially	in	the	nonrelativistic	domain.	For	one	reason,	it	is	essentially	invariant	under	Galilean	transformations,	which	comprise	the	symmetry	group	of	Newtonian	dynamics.[note	2]	Moreover,	processes	that	change	particle	number	are	natural	in	relativity,	and	so	an	equation	for	one	particle	(or	any	fixed	number	thereof)	can	only	be	of	limited	use.
[23]	A	more	general	form	of	the	Schrödinger	equation	that	also	applies	in	relativistic	situations	can	be	formulated	within	quantum	field	theory	(QFT),	a	framework	that	allows	the	combination	of	quantum	mechanics	with	special	relativity.	The	region	in	which	both	simultaneously	apply	may	be	described	by	relativistic	quantum	mechanics.	Such
descriptions	may	use	time	evolution	generated	by	a	Hamiltonian	operator,	as	in	the	Schrödinger	functional	method.[24][25][26][27]	Klein–Gordon	and	Dirac	equations	Attempts	to	combine	quantum	physics	with	special	relativity	began	with	building	relativistic	wave	equations	from	the	relativistic	energy–momentum	relation	E	2	=	(	p	c	)	2	+	(	m	0	c	2	)
2	,	{\displaystyle	E^{2}=(pc)^{2}+\left(m_{0}c^{2}\right)^{2},}	instead	of	nonrelativistic	energy	equations.	The	Klein–Gordon	equation	and	the	Dirac	equation	are	two	such	equations.	The	Klein–Gordon	equation,	−	1	c	2	∂	2	∂	t	2	ψ	+	∇	2	ψ	=	m	2	c	2	ℏ	2	ψ	,	{\displaystyle	-{\frac	{1}{c^{2}}}{\frac	{\partial	^{2}}{\partial	t^{2}}}\psi	+abla
^{2}\psi	={\frac	{m^{2}c^{2}}{\hbar	^{2}}}\psi	,}	was	the	first	such	equation	to	be	obtained,	even	before	the	nonrelativistic	one-particle	Schrödinger	equation,	and	applies	to	massive	spinless	particles.	Historically,	Dirac	obtained	the	Dirac	equation	by	seeking	a	differential	equation	that	would	be	first-order	in	both	time	and	space,	a	desirable
property	for	a	relativistic	theory.	Taking	the	"square	root"	of	the	left-hand	side	of	the	Klein–Gordon	equation	in	this	way	required	factorizing	it	into	a	product	of	two	operators,	which	Dirac	wrote	using	4	×	4	matrices	α	1	,	α	2	,	α	3	,	β	{\displaystyle	\alpha	_{1},\alpha	_{2},\alpha	_{3},\beta	}	.	Consequently,	the	wave	function	also	became	a	four-
component	function,	governed	by	the	Dirac	equation	that,	in	free	space,	read	(	β	m	c	2	+	c	(	∑	n	=		1	3	α	n	p	n	)	)	ψ	=	i	ℏ	∂	ψ	∂	t	.	{\displaystyle	\left(\beta	mc^{2}+c\left(\sum	_{n\mathop	{=}	1}^{3}\alpha	_{n}p_{n}\right)\right)\psi	=i\hbar	{\frac	{\partial	\psi	}{\partial	t}}.}	This	has	again	the	form	of	the	Schrödinger	equation,	with	the	time
derivative	of	the	wave	function	being	given	by	a	Hamiltonian	operator	acting	upon	the	wave	function.	Including	influences	upon	the	particle	requires	modifying	the	Hamiltonian	operator.	For	example,	the	Dirac	Hamiltonian	for	a	particle	of	mass	m	and	electric	charge	q	in	an	electromagnetic	field	(described	by	the	electromagnetic	potentials	φ	and	A)
is:	H	^	Dirac	=	γ	0	[	c	γ	⋅	(	p	^	−	q	A	)	+	m	c	2	+	γ	0	q	φ	]	,	{\displaystyle	{\hat	{H}}_{\text{Dirac}}=\gamma	^{0}\left[c{\boldsymbol	{\gamma	}}\cdot	\left({\hat	{\mathbf	{p}	}}-q\mathbf	{A}	\right)+mc^{2}+\gamma	^{0}q\varphi	\right],}	in	which	the	γ	=	(γ1,	γ2,	γ3)	and	γ0	are	the	Dirac	gamma	matrices	related	to	the	spin	of	the	particle.	The
Dirac	equation	is	true	for	all	spin-1⁄2	particles,	and	the	solutions	to	the	equation	are	4-component	spinor	fields	with	two	components	corresponding	to	the	particle	and	the	other	two	for	the	antiparticle.	For	the	Klein–Gordon	equation,	the	general	form	of	the	Schrödinger	equation	is	inconvenient	to	use,	and	in	practice	the	Hamiltonian	is	not	expressed
in	an	analogous	way	to	the	Dirac	Hamiltonian.	The	equations	for	relativistic	quantum	fields,	of	which	the	Klein–Gordon	and	Dirac	equations	are	two	examples,	can	be	obtained	in	other	ways,	such	as	starting	from	a	Lagrangian	density	and	using	the	Euler–Lagrange	equations	for	fields,	or	using	the	representation	theory	of	the	Lorentz	group	in	which
certain	representations	can	be	used	to	fix	the	equation	for	a	free	particle	of	given	spin	(and	mass).	In	general,	the	Hamiltonian	to	be	substituted	in	the	general	Schrödinger	equation	is	not	just	a	function	of	the	position	and	momentum	operators	(and	possibly	time),	but	also	of	spin	matrices.	Also,	the	solutions	to	a	relativistic	wave	equation,	for	a
massive	particle	of	spin	s,	are	complex-valued	2(2s	+	1)-component	spinor	fields.	Fock	space	As	originally	formulated,	the	Dirac	equation	is	an	equation	for	a	single	quantum	particle,	just	like	the	single-particle	Schrödinger	equation	with	wave	function	Ψ	(	x	,	t	)	{\displaystyle	\Psi	(x,t)}	.	This	is	of	limited	use	in	relativistic	quantum	mechanics,	where
particle	number	is	not	fixed.	Heuristically,	this	complication	can	be	motivated	by	noting	that	mass–energy	equivalence	implies	material	particles	can	be	created	from	energy.	A	common	way	to	address	this	in	QFT	is	to	introduce	a	Hilbert	space	where	the	basis	states	are	labeled	by	particle	number,	a	so-called	Fock	space.	The	Schrödinger	equation	can
then	be	formulated	for	quantum	states	on	this	Hilbert	space.[23]	However,	because	the	Schrödinger	equation	picks	out	a	preferred	time	axis,	the	Lorentz	invariance	of	the	theory	is	no	longer	manifest,	and	accordingly,	the	theory	is	often	formulated	in	other	ways.[28]	History	Erwin	Schrödinger	Main	article:	Theoretical	and	experimental	justification
for	the	Schrödinger	equation	Following	Max	Planck's	quantization	of	light	(see	black-body	radiation),	Albert	Einstein	interpreted	Planck's	quanta	to	be	photons,	particles	of	light,	and	proposed	that	the	energy	of	a	photon	is	proportional	to	its	frequency,	one	of	the	first	signs	of	wave–particle	duality.	Since	energy	and	momentum	are	related	in	the	same
way	as	frequency	and	wave	number	in	special	relativity,	it	followed	that	the	momentum	p	{\displaystyle	p}	of	a	photon	is	inversely	proportional	to	its	wavelength	λ	{\displaystyle	\lambda	}	,	or	proportional	to	its	wave	number	k	{\displaystyle	k}	:	p	=	h	λ	=	ℏ	k	,	{\displaystyle	p={\frac	{h}{\lambda	}}=\hbar	k,}	where	h	{\displaystyle	h}	is	Planck's
constant	and	ℏ	=	h	/	2	π	{\displaystyle	\hbar	={h}/{2\pi	}}	is	the	reduced	Planck	constant.	Louis	de	Broglie	hypothesized	that	this	is	true	for	all	particles,	even	particles	which	have	mass	such	as	electrons.	He	showed	that,	assuming	that	the	matter	waves	propagate	along	with	their	particle	counterparts,	electrons	form	standing	waves,	meaning	that
only	certain	discrete	rotational	frequencies	about	the	nucleus	of	an	atom	are	allowed.[29]	These	quantized	orbits	correspond	to	discrete	energy	levels,	and	de	Broglie	reproduced	the	Bohr	model	formula	for	the	energy	levels.	The	Bohr	model	was	based	on	the	assumed	quantization	of	angular	momentum	L	{\displaystyle	L}	according	to	L	=	n	h	2	π	=	n
ℏ	.	{\displaystyle	L=n{\frac	{h}{2\pi	}}=n\hbar	.}	According	to	de	Broglie,	the	electron	is	described	by	a	wave,	and	a	whole	number	of	wavelengths	must	fit	along	the	circumference	of	the	electron's	orbit:	n	λ	=	2	π	r	.	{\displaystyle	n\lambda	=2\pi	r.}	This	approach	essentially	confined	the	electron	wave	in	one	dimension,	along	a	circular	orbit	of
radius	r	{\displaystyle	r}	.	In	1921,	prior	to	de	Broglie,	Arthur	C.	Lunn	at	the	University	of	Chicago	had	used	the	same	argument	based	on	the	completion	of	the	relativistic	energy–momentum	4-vector	to	derive	what	we	now	call	the	de	Broglie	relation.[30][31]	Unlike	de	Broglie,	Lunn	went	on	to	formulate	the	differential	equation	now	known	as	the
Schrödinger	equation	and	solve	for	its	energy	eigenvalues	for	the	hydrogen	atom.	Unfortunately	the	paper	was	rejected	by	the	Physical	Review,	as	recounted	by	Kamen.[32]	Following	up	on	de	Broglie's	ideas,	physicist	Peter	Debye	made	an	offhand	comment	that	if	particles	behaved	as	waves,	they	should	satisfy	some	sort	of	wave	equation.	Inspired
by	Debye's	remark,	Schrödinger	decided	to	find	a	proper	3-dimensional	wave	equation	for	the	electron.	He	was	guided	by	William	Rowan	Hamilton's	analogy	between	mechanics	and	optics,[note	3]	encoded	in	the	observation	that	the	zero-wavelength	limit	of	optics	resembles	a	mechanical	system—the	trajectories	of	light	rays	become	sharp	tracks	that
obey	Fermat's	principle,	an	analog	of	the	principle	of	least	action.[33]	The	equation	he	found	is[34]	i	ℏ	∂	∂	t	Ψ	(	r	,	t	)	=	−	ℏ	2	2	m	∇	2	Ψ	(	r	,	t	)	+	V	(	r	)	Ψ	(	r	,	t	)	.	{\displaystyle	i\hbar	{\frac	{\partial	}{\partial	t}}\Psi	(\mathbf	{r}	,t)=-{\frac	{\hbar	^{2}}{2m}}abla	^{2}\Psi	(\mathbf	{r}	,t)+V(\mathbf	{r}	)\Psi	(\mathbf	{r}	,t).}	However,	by	that
time,	Arnold	Sommerfeld	had	refined	the	Bohr	model	with	relativistic	corrections.[35][36]	Schrödinger	used	the	relativistic	energy–momentum	relation	to	find	what	is	now	known	as	the	Klein–Gordon	equation	in	a	Coulomb	potential	(in	natural	units):	(	E	+	e	2	r	)	2	ψ	(	x	)	=	−	∇	2	ψ	(	x	)	+	m	2	ψ	(	x	)	.	{\displaystyle	\left(E+{\frac	{e^{2}}
{r}}\right)^{2}\psi	(x)=-abla	^{2}\psi	(x)+m^{2}\psi	(x).}	He	found	the	standing	waves	of	this	relativistic	equation,	but	the	relativistic	corrections	disagreed	with	Sommerfeld's	formula.	Discouraged,	he	put	away	his	calculations	and	secluded	himself	with	a	mistress	in	a	mountain	cabin	in	December	1925.[37]	While	at	the	cabin,	Schrödinger	decided
that	his	earlier	nonrelativistic	calculations	were	novel	enough	to	publish	and	decided	to	leave	off	the	problem	of	relativistic	corrections	for	the	future.	Despite	the	difficulties	in	solving	the	differential	equation	for	hydrogen	(he	had	sought	help	from	his	friend	the	mathematician	Hermann	Weyl[38]: 3 )	Schrödinger	showed	that	his	nonrelativistic	version
of	the	wave	equation	produced	the	correct	spectral	energies	of	hydrogen	in	a	paper	published	in	1926.[38]: 1 [39]	Schrödinger	computed	the	hydrogen	spectral	series	by	treating	a	hydrogen	atom's	electron	as	a	wave	Ψ	(	x	,	t	)	{\displaystyle	\Psi	(\mathbf	{x}	,t)}	,	moving	in	a	potential	well	V	{\displaystyle	V}	,	created	by	the	proton.	This	computation
accurately	reproduced	the	energy	levels	of	the	Bohr	model.	The	Schrödinger	equation	details	the	behavior	of	Ψ	{\displaystyle	\Psi	}	but	says	nothing	of	its	nature.	Schrödinger	tried	to	interpret	the	real	part	of	Ψ	∂	Ψ	∗	∂	t	{\displaystyle	\Psi	{\frac	{\partial	\Psi	^{*}}{\partial	t}}}	as	a	charge	density,	and	then	revised	this	proposal,	saying	in	his	next
paper	that	the	modulus	squared	of	Ψ	{\displaystyle	\Psi	}	is	a	charge	density.	This	approach	was,	however,	unsuccessful.[40]: 219 [41]: 24–25 [42]	In	1926,	just	a	few	days	after	this	paper	was	published,	Max	Born	successfully	interpreted	Ψ	{\displaystyle	\Psi	}	as	the	probability	amplitude,	whose	modulus	squared	is	equal	to	probability	density.[40]: 220 
Later,	Schrödinger	himself	explained	this	interpretation	as	follows:[43]	The	already	...	mentioned	psi-function....	is	now	the	means	for	predicting	probability	of	measurement	results.	In	it	is	embodied	the	momentarily	attained	sum	of	theoretically	based	future	expectation,	somewhat	as	laid	down	in	a	catalog.— Erwin	Schrödinger	Interpretation	Main
article:	Interpretations	of	quantum	mechanics	The	Schrödinger	equation	provides	a	way	to	calculate	the	wave	function	of	a	system	and	how	it	changes	dynamically	in	time.	However,	the	Schrödinger	equation	does	not	directly	say	what,	exactly,	the	wave	function	is.	The	meaning	of	the	Schrödinger	equation	and	how	the	mathematical	entities	in	it
relate	to	physical	reality	depends	upon	the	interpretation	of	quantum	mechanics	that	one	adopts.	In	the	views	often	grouped	together	as	the	Copenhagen	interpretation,	a	system's	wave	function	is	a	collection	of	statistical	information	about	that	system.	The	Schrödinger	equation	relates	information	about	the	system	at	one	time	to	information	about	it
at	another.	While	the	time-evolution	process	represented	by	the	Schrödinger	equation	is	continuous	and	deterministic,	in	that	knowing	the	wave	function	at	one	instant	is	in	principle	sufficient	to	calculate	it	for	all	future	times,	wave	functions	can	also	change	discontinuously	and	stochastically	during	a	measurement.	The	wave	function	changes,
according	to	this	school	of	thought,	because	new	information	is	available.	The	post-measurement	wave	function	generally	cannot	be	known	prior	to	the	measurement,	but	the	probabilities	for	the	different	possibilities	can	be	calculated	using	the	Born	rule.[19][44][note	4]	Other,	more	recent	interpretations	of	quantum	mechanics,	such	as	relational
quantum	mechanics	and	QBism	also	give	the	Schrödinger	equation	a	status	of	this	sort.[47][48]	Schrödinger	himself	suggested	in	1952	that	the	different	terms	of	a	superposition	evolving	under	the	Schrödinger	equation	are	"not	alternatives	but	all	really	happen	simultaneously".	This	has	been	interpreted	as	an	early	version	of	Everett's	many-worlds
interpretation.[49][50][note	5]	This	interpretation,	formulated	independently	in	1956,	holds	that	all	the	possibilities	described	by	quantum	theory	simultaneously	occur	in	a	multiverse	composed	of	mostly	independent	parallel	universes.[52]	This	interpretation	removes	the	axiom	of	wave	function	collapse,	leaving	only	continuous	evolution	under	the
Schrödinger	equation,	and	so	all	possible	states	of	the	measured	system	and	the	measuring	apparatus,	together	with	the	observer,	are	present	in	a	real	physical	quantum	superposition.	While	the	multiverse	is	deterministic,	we	perceive	non-deterministic	behavior	governed	by	probabilities,	because	we	don't	observe	the	multiverse	as	a	whole,	but	only
one	parallel	universe	at	a	time.	Exactly	how	this	is	supposed	to	work	has	been	the	subject	of	much	debate.	Why	we	should	assign	probabilities	at	all	to	outcomes	that	are	certain	to	occur	in	some	worlds,	and	why	should	the	probabilities	be	given	by	the	Born	rule?[53]	Several	ways	to	answer	these	questions	in	the	many-worlds	framework	have	been
proposed,	but	there	is	no	consensus	on	whether	they	are	successful.[54][55][56]	Bohmian	mechanics	reformulates	quantum	mechanics	to	make	it	deterministic,	at	the	price	of	making	it	explicitly	nonlocal	(a	price	exacted	by	Bell's	theorem).	It	attributes	to	each	physical	system	not	only	a	wave	function	but	in	addition	a	real	position	that	evolves
deterministically	under	a	nonlocal	guiding	equation.	The	evolution	of	a	physical	system	is	given	at	all	times	by	the	Schrödinger	equation	together	with	the	guiding	equation.[57]	See	also	Eckhaus	equation	Pauli	equation	Fokker–Planck	equation	List	of	things	named	after	Erwin	Schrödinger	Logarithmic	Schrödinger	equation	Nonlinear	Schrödinger
equation	Quantum	channel	Relation	between	Schrödinger's	equation	and	the	path	integral	formulation	of	quantum	mechanics	Schrödinger	picture	Wigner	quasiprobability	distribution	Notes	^	This	rule	for	obtaining	probabilities	from	a	state	vector	implies	that	vectors	that	only	differ	by	an	overall	phase	are	physically	equivalent;	|	ψ	⟩	{\displaystyle
|\psi	\rangle	}	and	e	i	α	|	ψ	⟩	{\displaystyle	e^{i\alpha	}|\psi	\rangle	}	represent	the	same	quantum	states.	In	other	words,	the	possible	states	are	points	in	the	projective	space	of	a	Hilbert	space,	usually	called	the	complex	projective	space.	^	More	precisely,	the	effect	of	a	Galilean	transformation	upon	the	Schrödinger	equation	can	be	canceled	by	a
phase	transformation	of	the	wave	function	that	leaves	the	probabilities,	as	calculated	via	the	Born	rule,	unchanged.[22]	^	See	the	Hamilton–Jacobi	equation.	^	One	difficulty	in	discussing	the	philosophical	position	of	"the	Copenhagen	interpretation"	is	that	there	is	no	single,	authoritative	source	that	establishes	what	the	interpretation	is.	Another
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